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Abstract. A set of linearly independent functions is orthogonalised by means of the Lowdin 
transformation. In this paper, a simple method is presented for calculating the orthogonali- 
sation as a polynomial of finite degree in the overlap matrix S. T h e  method is illustrated 
for various cases. 

1. Introduction 

A familiar problem in quantum mechanics is to expand a function x in terms of a 
basis spanned by a set of functions ai, i = 1 , .  . , , n, such that x = Z aiai. However, 
in many cases the natural basis set is not orthogonal but has overlap integrals of the form 

A, = ai@, dT = Si, f s,,. I 
Examples of non-orthogonal functions can be found in different fields of physics. In 
nuclear physics, a model based on the group SU(3) provides a microscopic understand- 
ing of rotational motion [ l ,  21. The basis states are labelled as 

CLS"C3, = I ( &  P ) K L W  (1.2) 

Here (A,  P) are the quantum numbers associated with an irreducible representation 
(irrep) of SU(3), L is the value of the orbital angular momentum and M is its z 
component. There exist certain rules to deduce the values of L that are compatible 
with an irrep of SU(3). In general a state with a particular value of L can occur several 
times. The multiplicity is resolved by the label K .  The simplest way is to define the 
states of the SU(3) model by a Hill-Wheeler projection [ 11. However, it turns out that 
they are not orthogonal with respect to the quantum number K .  Another field where 
non-orthogonality enters is molecular physics. Consider the case of the hydrogen 
molecule (H,) which was first treated by Heitler and London [3]. They evaluated a 
simple two-body Hamiltonian at fixed values of the internuclear distances (the Born- 
Oppenheimer approximation). The wavefunction was taken as an antisymmetrised 
product (Slater determinant) of two 1s hydrogen wavefunctions centred about the 
nuclei A and B, respectively. The orbital part of these functions are in general not 
orthogonal but have an overlap as defined in (1) .  
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In principle, all calculations can be done in a non-orthogonal scheme; however, 
many formulae are much simpler if an orthogonal basis is used. There are different 
methods to generate an  orthogonal function system. The best known is probably the 
Gram-Schmidt procedure. Denoting the original functions by CP, and the orthogonal 
functions by I$,, the Gram-Schmidt method may be summarised as 

The first function is simply 4, = Qi/dA1,. The other #+ are generated successively by 
adding ai and orthogonalising against all the previous functions. Clearly the explicit 
form of the orthogonal basis depends on the order in which the non-orthogonal 
functions are used. 

Instead Lowdin defined a symmetric transformation between the two bases [4] 

It is therefore necessary to find an  expression for A - ” 2  = ( I  +S)-1’2. If the matrix 
elements of S are small, that is if 

4 

then the following Taylor series converges: 

If the convergence criterion is not satisfied then another matrix U can be defined 

(1.10) 

Here s,,, is the largest eigenvalue of S. Now a convergent power series in U has the 
form 

(l+s)-”*=(l+s,,,)-~’z(l+~u+~u’+ . . .). (1.11) 

Therefore, in one way or another, it is possible to define the Lowdin transformation 
in terms of an  injinife power series in the overlap matrix S. 

A second realisation of the Lowdin transformation, which avoids the Taylor series 
expansion, is based on the fact that the similarity transformation that diagonalises A 
also diagonalises A - ” 2 .  If we denote the diagonal matrix containing the eigenvalues 
of A by d, then 

d = U-IAU. (1.12) 
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The matrix U contains the eigenvectors. It is trivial to calculate d - ' / *  because it is 
diagonal and subsequently 

A-112 = Ud-' / 'U-I .  (1.13) 

If the Lowdin transformation is calculated in this way one needs to know both the 
eigenvalues and  the eigenvectors of S. In this paper we will discuss an  algorithm 
where A-''2 is defined as a polynomial ofjnite degree in the overlap matrix and which 
only requires the eigenvalues. 

2. Mathematical background 

The method presented here was previously developed in the context of finite group 
transformations. We will now briefly discuss its mathematical foundation [ 51. As we 
have seen, the Lowdin transformation can be expressed as an  infinite power series in 
the overlap matrix. Consider now the Cayley-Hamilton theorem which states that a 
matrix satisfies its own eigenvalue equation. Therefore, if S is an  n x n matrix then 
terms like Sk, k L n, can be expressed as a power series in S of degree r < n. As a 
consequence, the infinite power series is replaced by a finite one: 

n - 1  

(1 + S)- ' I2  = bkSk 
k = O  

Over the years many methods for calculating the coefficients in this expansion have 
been developed [6] but most of these algorithms are not very attractive to the prac- 
titioner. However, a much simpler form arises if one uses a basis of orthogonal matrix 
polynomials rather than the monomial basis Sk. 

Consider the form 

1 
K ( X ,  Y )  =-Trace(X+Y).  n (2.2) 

Orthogonal polynomials P k ( S )  of degree k are defined by 

The moments Mk are related to the traces of Sk 

1 
Mk = - n Trace(Sk).  

K [ P ~ ( S ) ,  P , ( S ) ]  =-Trace[P:(S)P,(S)]= n (2.5) 

(2.4) 

The normalisation factors Dk are calculated by replacing S" by Mmtk in the deter- 
minant. The orthonormality of the polynomials is expressed as 

1 

It can also be shown that 
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This result follows from the Cayley-Hamilton theorem in combination with the deter- 
minant properties. The ( q ,  k )  element in the determinant is essentially SqTk which, 
for k 2 n, can be rewritten as 1 a l S q + h - n t r  . This result holds also for the moments, 
because the trace of the sum is equal to the sum of the traces. The coefficients are 
independent of the row q and therefore every element in the kth column can be 
expressed as a linear combination of the previous n columns and  so the determinant 
vanishes. 

Using these results it follows that the Lowdin transformation can be written as 
.. . 

(l+s)-”’= CkPk(S). (2.7) 
k=O 

The coefficients are determined using the orthogonality of the polynomials 

1 
ck = K [ P ~ ( S ) ,  (l+S)-”2]=-Trace[P:(S)(1+S)-”2].  (2.8) n 

The ck depend only on the conjugacy class of S, that is they are invariant under 
similarity transformations. If we denote R = CSC-I as the conjugate of S then 

(1 + R)-’ ’2  = C (  1 + S)-1’2C-’ 
n - l  

= c c ckPk(s)c-I 
k = I )  

The coefficients can be calculated for the simplest possible form of the matrix R = 
CSC-’ which will be in the cases considered here the diagonal form. 

3. Applications 

As the first example, consider the two-centre problem which is relevant in molecular 
physics as well as in quark-nuclear physics [7]. For the moment we d o  not consider 
any explicit form for the wavefunctions, other than that they are centred about two 
points A and B which are a distance R apart. The overlap integral and  matrix are 

(3.1) 

The orthogonal polynomials are derived from this 2 x 2 matrix 

1 
PO(S) = 1 P , ( S )  =-s. (3.2) 

E 

The coefficients are determined by using the diagonal matrix R = diag(+e, - F )  

1 1 co=--===(diTT+d-F-&) c l==(&-d iTT) .  
241 - e 2  2 J 1  - E z  

With these results the Lowdin transformation A-’’2 = c,P,(S) + c, P l ( S )  is 

(3.3) 

(3.4) 

This is of course a well known result [8]. 
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To illustrate the effects of the orthogonalisation we choose two simple Gaussians 
as basis functions 

1 

If the distance between the centres is R then the overlap integral has the value 

E = exp( -$), 

(3.5) 

( 3 . 6 )  

In figure 1 the non-orthogonal functions are compared with the orthogonal ones. For 
completeness we have also included the results of the Gram-Schmidt procedure. For 
large separations, the orthogonalisation has little effect. As the centres approach one 
another the form of the orthogonal functions depends strongly on the method used. 

f l x l  0 . 5 1  Non-orthogonal functions 0.51 f ( x )  

R.10 

0 1  

- O . l /  - 0 2  

-0.1. 

-0.2. 
I 

Lowdin 0 51 f ( x )  0 5  R]\'ii ~~ , , R ~ ? ~  , 

-100-7<-%--25 0 2 5  50-75 100 -100 -75-50 5 0  75 100 
-0.1- 

-0.2 - 

-0.1 1 
-0.21 

Gram-Schmidt 0.5. f i x )  

R-10 

-0.2 ; -0.21 

Figure 1. The effects of the Lowdin and Gram-Schmidt orthogonalisation are shown for 
two Gaussian functions. The original functions which are centred on the x axis at x = i R / 2  
are shown in the top part as a function of x. The orthogonalised functions are shown 
beneath. In each case the calculations were done for two different centre separations, 
R = 2 a n d R = 1 0 .  
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In these graphs it appears that the Lowdin transformation changes the original functions 
much less than the Gram-Schmidt method. This is more than a casual impression. I t  
has been proved that the Lowdin procedure is the best scheme inasmuch as it changes 
the original functions as little as possible [9]. 

As the second example we choose the three-centre problem which as been studied 
with regard to the non-additivity of molecular forces [lo]. I f  we denote the overlaps 
S , * ,  SI3 and S23 by a ,  /3 and y ,  respectively, then the 3 x 3 overlap matrix is 

O a P  
(3.7) 

The orthogonal polynomials are 

Since S is symmetric and real its eigenvalues are real. Because the matrix is traceless 
it has the secular equation 

A t  - q A ,  - r = 0. (3.9) 

The quantities q and r are given by 

q = f Trace(S2) = a’+ P’+ y 2  

r = f Trace( S3) = 2 4  y .  

(3.10) 

(3.1 1) 

The roots of a third-order polynomial are determined using the standard formulae [ 111 

with p = 1, 2, 3 and 

(3.12) 

(3.13) 

For the explicit calculations of the coefficients we again choose Gaussian functions 
centred about three points A, B and C. All possible configurations can be described 
by a triangle but we consider only isosceles triangles in the xy plane. The centres A 
and B are fixed at *x/2 and the centre C is at the coordinates (0, y ,  0). The coefficients 
ck are calculated for different values of y. The results are shown in figure 2. The curves 
are symmetric about y = 0, which describes a linear arrangement of the three centres. 
If the centres form an equilateral triangle then the coefficient c2 is zero. In that case 
the overlaps are all equal and S has a double root at -a, and as a consequence S2 is 
not independent of 1 and S. For small deviations from y = x we define E = a - p = CY - y 
and expand the c2 in E.  The result is 

(3.14) 

The Lowdin transformation is calculated for the different triangular arrangements and 
compared with the results of a Taylor expansion. In order to learn something about 
the convergence of the latter we consider a second- and a tenth-order expansion. As 
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Isosceles  Isosceles  

c2 

-4  -2 -1 1 0 2 3 3 4 v / a  

Figure 2. The coefficients c,, c 2 .  and c3 for the three-centre problem are calculated for 
triangular arrangements where centres A and Bare fixed on the x axis at *f (size parameter 
a = 1 ) .  The third centre C is positioned on the y axis. In general the centres form an 
isosceles triangle. If centre C is at v = *(3/4)” ’ then the centres form an equilateral triangle 
and c2 vanishes, as described in the text. 

measures for comparisons we choose the centroid and the variance of the resulting 
matrices. They are defined by [12] 

1 
N 

E = - Trace(A-”2) 

1 
N 

a2=-Trace[(A-”2- E ) ’ ] .  

(3.15) 

(3.16) 

The results of these comparisons are shown in figures 3 and  4 respectively. Both graphs 
indicate that the convergence of the Taylor series is rather poor as soon as the overlap 
between the wavefunctions of the three centres becomes comparable. This shows how 
much redundancy can be involved in using the Taylor series. Although the entire 
matrix function depends only on 1, S and S’, the Taylor series may need many more 
terms to give a good result. 

4. A recursive algorithm for generating the matrix polynomials and evaluating the 
matrix function 

As long as the matrices involved are small the easiest way to proceed is to construct 
the matrix polynomials explicitly using Szego’s determinant. We present in this para- 
graph an  alternative method for a recursive generation of the polynomials. In that 
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- 4  -3 - 2  -1 0 1 2 3 4 

Position o f  centre’ t ’on the yaxis 

Figure 3. The centroids of the exact Lowdin transformation are compared with those from 
a second- and tenth-order Taylor expansion. The symbol cL refers to the centroid of the 
exact Lowdin transformation while and e? are the results for the appropriate Taylor 
expansion. 

way one avoids calculating a large number of determinants. As shown for example 
in [ 131 the polynomials from Szego’s determinant satisfy a three-term recursion relation: 

S P k  ( s )  = P k  - 1 P k  - I (SI + k P k  (SI + PkPk + 1 ( (4.1) 

Together with Po = 1 and 
coefficients are determined from 

= 0 this specifies the orthogonal matrix polynomials. The 

1 
N 

1 
N 

( Y k  = - Trace[SP;( S ) ]  

p i  = - Trace[ ( s  - (Yk 1)Pk( s)  - p k -  1 Pk-1 (S)l2. 

(4.2) 

(4.3) 

We recognise that formula (4.1) together with (4.2) and (4.3) describe essentially the 
Lanczos algorithm [14]. The difference is that here a series of matrices rather than 
vectors is generated. In order to calculate the expansion coefficients c, the polynomials 
are required in their diagonal forms. These are generated by replacing in (4.1) the 
matrix S by the matrix R which contains the eigenvalues of S. Now the formulae 
(4.1)-(4.3) are equivalent to those arising in Forsythe’s [ 151 algorithm to determine 
orthogonal polynomials over a discrete set of points. After the coefficients have been 
calculated the full matrix function can be evaluated. This exercise is simplified by 
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I 

02 .: I 
1 

- L  - 3  - 2  -1  0 1 2 3 4 

Posit ion o f  cent re ‘C’on the y ax is  

Figure 4. The standard deviations of the Lowdin transformation are compared with those 
from a second- and tenth-order Taylor expansion. The notation is as in figure 3. 

using Clenshaw’s recurrence formula [16] (see also [ l l ]  p 143). In general we are 
concerned with a summation of the kind 

M 

where M s N - 1, with N the order of the matrix. Between the Pk there exist recurrence 
relations of the type 

(4.5) Pk+l(S) = Ak(S)Pk(S)  + B,(S)Pk- , (S) .  

The coefficients Ak and Bk are matrices themselves. Their explicit form can easily be 
determined from (4.1). Provided that the quantities ck are known then the matrices 
Yk are defined by 

YA,l+1= YA,l+*=O (4.6) 

Yk = Ak (SI Y k  f 1 + B k + 1 ( S )  Yk +2 + c k  1. (4.7) 

Here the index k runs from M,  M - 1 , .  . . , 1 .  Each of these equations is solved for ck 
and inserted into the summation formula. Finally, the function f ( S )  can be written as 

f ( s )=[Bl(S)Y*+c, l lP , (S)+  Y,PI(S). (4.8) 

Effectively only the two simplest matrix polynomials are required explicitly. The 
dependence o f f (  S )  on higher powers of S is contained in the Yl and Y z ,  
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We used the formalism presented here to calculate the Lowdin transformation for 
systems with N vectors ( N  = 5, 10,. . . ,25) .  The vectors were generated at random 
and normalised to unity and the overlap matrix was calculated by taking the scalar 
products between the different vectors. In order to avoid any problems with a singularity 
of the Lowdin transformation the matrix elements of the overlap matrix were multiplied 
by 0.95. The results are shown in table 1. The accuracy of the Lowdin transform was 
checked by calculating the quantity 

d = (1 + S)-”*(  1 + S ) (  1 + S)-”2. (4.9) 

The result should be the identity matrix with centroid 1 and width 0. In columns 4 
and 5 of table 1 the numerical results are shown in the different cases. 

Table 1. The results of the Lowdin transformation for systems of different sizes. The first 
column gives the dimension of the matrix, the second and third columns the centroid and 
width of the Lowdin transformation as calculated from the eigenvalues of S. The fourth 
and fifth columns give the same measures for the form d = (1  + S)-’ 5 (  1 + S ) (  1 +Si-” ’ 
which should be compared with the results of the identity matrix. 

N EL U L  E d  ud 

5 1.6975 1.4151 1 .oooo 5.5511 E-17 
10 1.6056 1.1470 1 .oooo 3.0405 E - 17 
15 1.7006 1.3145 1 .oooo 7.3084 E - 17 
20 1.5712 1.1389 1 .oooo 8.5998 E - 17 
25 1.5999 1.1274 1 .oooo 1.0878 E-  16 

5. Conclusion 

We have presented an alternative method for calculating matrix polynomials which is 
based on the Cayley-Hamilton theorem and the use of orthogonal polynomials. The 
coefficients in the expansion are determined by simple trace operations. We gave two 
different methods to generate the polynomial basis, a direct one based on Szego’s 
determinant and a second recursive method which we found more useful for a computa- 
tional implementation. 
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